

Fire Technician

CLIENT: Crane Composites

23525 W. Eames St Channahon, IL 60410

Test Report Number: TJ7332 Date: October 12, 2020

SAMPLE ID: The client identified the following test material as:

Glasbord PIF

SAMPLING DETAIL: Test samples were submitted to the laboratory directly by the client. No sampling or sample preparation were

observed by QAI staff.

DATE OF RECEIPT: Samples were received at QAI facilities on: September 22, 2020

TESTING PERIOD: October 12, 2020 to: October 12, 2020

AUTHORIZATION: Testing was authorized by Mike Buhr for proposal 20DN092201 signed September 22, 2020.

TEST REQUESTED: Perform standard flame spread and smoke density developed classification tests on the sample supplied by the

Client in accordance with CAN ULC S102 - 10 "STANDARD METHOD OF TEST FOR SURFACE BURNING

CHARACTERISTICS OF BUILDING MATERIALS AND ASSEMBLIES".

	Flame Spread		Smoke Developed	
TEST 1 RESULTS:	79	*UNROUNDED	261	*UNROUNDED
TEST 2 RESULTS:	116	*UNROUNDED	244	*UNROUNDED
TEST 3 RESULTS:	122	*UNROUNDED	224	*UNROUNDED
AVERAGE ROUNDED:	105		245	

Prepared By

Signed for and on behalf of QAI Laboratories, Inc.

Justin Gregory Hunter Hoffman

Project Engineer

Page 2 of 10

SCOPE: This fire-test-response standard is used for the comparative surface burning behavior of building materials is applicable to exposed surfaces such as walls, ceilings and others. The test is conducted with the specimen in the ceiling position with the surface to be evaluated exposed face down to the ignition source. The material, product, or assembly shall be capable of being mounted in the test position during the test. Thus, the specimen shall either be self-supporting by its own structural quality, held in place by added supports along the test surface, or secured from the back side. The purpose of this test method is to determine the relative burning behavior of the material by observing the flame spread along the specimen. Flame spread and smoke developed index are reported. However, there is not necessarily a relationship between these two measurements.

USE: The use of supporting materials on the underside of the test specimen has the ability to lower the flame spread index from those which might be obtained if the specimen could be tested without such support. These test results do not necessarily relate to indices obtained by testing materials without such support.

Testing of materials that melt, drip, or delaminate to such a degree that the continuity of the flame front is destroyed, results in low flame spread indices that do not relate directly to indices obtained by testing materials that remain in place.

This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire-hazard or fire-risk assessment of the materials, products, or assemblies under actual fire conditions.

PROCEDURE: A brief overview of the method is as follows: The test specimen, a material between 20 and 24 inches in width by 24 feet +/- 12 inches in length is loaded onto the water cooled ledge of the fire test chamber when tested to ASTM E84 or CAN/ULC-S102. If tested to CAN/ULC-S102.2 the specimen is tested on the chamber floor. The inside dimensions are 17 3/4 inches +/- 1/4" wide by 12 inches +/- 1/2" deep by 25 feet long. The fire test chamber is a rectangular horizontal duct with a removable lid. The sides and base of the chamber are lined with an insulated firebrick with pressure tight observation windows down one side for a technician to observe flame progression during the duration of the 10-minute test period. The chamber lid is lowered into test position with non combustible concrete board placed between the specimen and chamber lid. A draft of 240 feet per minute which is maintained inside the test chamber throughout the test period by the means of an electronic fan afterburner and an electronically controlled damper door system located downstream of the test chamber in the exhaust ducting. The test is started when the test flame is ignited at the front of the test chamber. An electronic photocell system located in the exhaust system downstream from the test chamber is used to plot the smoke developed for use in calculating the smoke developed index while a technician plots the flame spread distance used in determining the flame spread index. The test is run for the 10 minute duration in accordance to the method.

(See Diagrams in the Appendix of this report.)

Test Number 1 of 3

TJ7332-Crane Composites-101220 Date: 10/12/2020

Page 3 of 10

PREPARATION AND CONDITIONING:

The sample sheet material was delivered to QAI in 24 inch wide X 4 foot long X 2 millimeters thick pieces. Six of these pieces were used for the test. (See Photos in Appendix of this report). The specimen was placed in the conditioning room (maintained at 70 ± 5° F and a relative humidity of $50 \pm 5\%$) for a minimum of 72 hours prior to testing.

MOUNTING METHOD:

The test ready sample consisting of six pieces measuring 24 inches wide X 4 feet long and an overall test thickness of 2 millimeters were supported with metal rods spaced at 24 inch intervals and 2 inch hexagonal mesh to fulfill the chamber requirements for testing. Prior to testing the samples were covered with 1/4 inch cement board as required in the test method.

Test Number 1 of 3

CAN ULC S102 TEST RESULTS:

TEST DATE: 10/12/2020 **CLIENT NAME: Crane Composites**

GlasBord PIF SAMPLE ID:

SAMPLE IGNITION: 01:02 Minutes / Seconds

MAX FLAME FRONT: 16.5 Feet

TIME TO MAXIMUM SPREAD: 03:32 Minutes / Seconds

TEST DURATION: 10:00 Minutes / Seconds

SUMMARY: 79 FLAME SPREAD: *UNROUNDED

> 261 SMOKE DEVELOPED: *UNROUNDED

OBSERVATIONS:

Ignition Time on the sample was observed at 01:02. Crackling was observed at 00:39. observed at 03:32.

A Maximum Flamefront of 16.5 feet was

Test Number 2 of 3

TJ7332-Crane Composites-101220 Date: 10/12/2020 Page 4 of 10

Test Hamber 2 or o

PREPARATION AND CONDITIONING:

The sample sheet material was delivered to QAI in 24 inch wide X 4 foot long X 2 millimeters thick pieces. Six of these pieces were used for the test. (See Photos in Appendix of this report). The specimen was placed in the conditioning room (maintained at 70 \pm 5° F and a relative humidity of 50 \pm 5%) for a minimum of 72 hours prior to testing.

MOUNTING METHOD:

The test ready sample consisting of six pieces measuring 24 inches wide X 4 feet long and an overall test thickness of 2 millimeters were stacked end to end on the chamber ledge to fulfill the chamber requirements for testing. Prior to testing the samples were covered with 1/4 inch cement board as required in the test method.

Test Number 2 of 3

CAN ULC S102 TEST RESULTS:

CLIENT NAME: Crane Composites TEST DATE: 10/12/2020

SAMPLE ID: GlasBord PIF

SAMPLE IGNITION: 00:57 Minutes / Seconds

MAX FLAME FRONT: 19.2 Feet

TIME TO MAXIMUM SPREAD: 03:06 Minutes / Seconds

TEST DURATION: 10:00 Minutes / Seconds

SUMMARY: FLAME SPREAD: 116 *UNROUNDED

SMOKE DEVELOPED: 244 *UNROUNDED

OBSERVATIONS:

Ignition Time on the sample was observed at 00:57. Crackling was observed at 00:42. observed at 03:06.

A Maximum Flamefront of 19.2 feet was

TJ7332-Crane Composites-101220 Date: 10/12/2020

Page 5 of 10

Test Number 3 of 3

PREPARATION AND CONDITIONING:

The sample sheet material was delivered to QAI in 24 inch wide X 4 foot long X 2 millimeters thick pieces. Six of these pieces were used for the test. (See Photos in Appendix of this report). The specimen was placed in the conditioning room (maintained at $70 \pm 5^{\circ}$ F and a relative humidity of $50 \pm 5^{\circ}$) for a minimum of 72 hours prior to testing.

MOUNTING METHOD:

The test ready sample consisting of six pieces measuring 24 inches wide X 4 feet long and an overall test thickness of 2 millimeters were supported with metal rods spaced at 24 inch intervals and 2 inch hexagonal mesh to fulfill the chamber requirements for testing. Prior to testing the samples were covered with 1/4 inch cement board as required in the test method.

Test Number 3 of 3

CAN ULC S102 TEST RESULTS:

CLIENT NAME: Crane Composites TEST DATE: 10/12/2020

SAMPLE ID: GlasBord PIF

SAMPLE IGNITION: 01:07 Minutes / Seconds

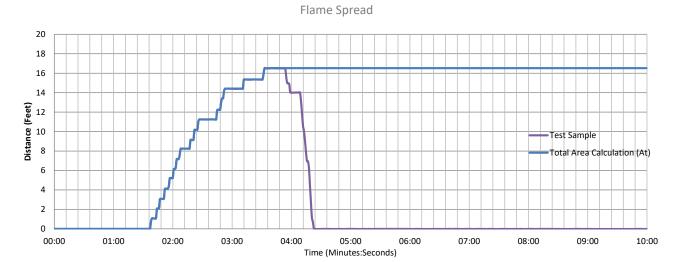
MAX FLAME FRONT: 19.1 Feet

TIME TO MAXIMUM SPREAD: 03:03 Minutes / Seconds

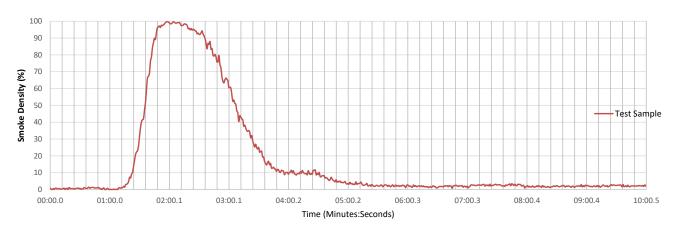
TEST DURATION: 10:00 Minutes / Seconds

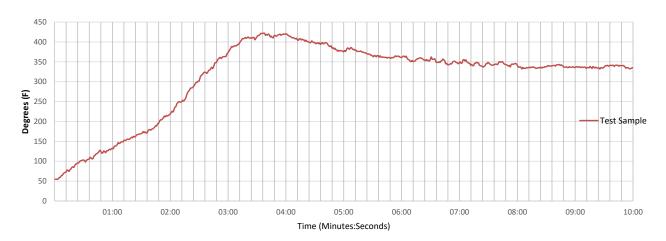
SUMMARY: FLAME SPREAD: 122 *UNROUNDED

SMOKE DEVELOPED: 224 *UNROUNDED

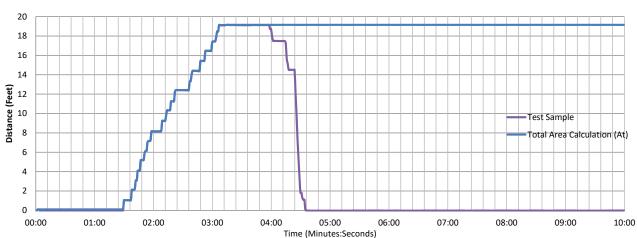

OBSERVATIONS:

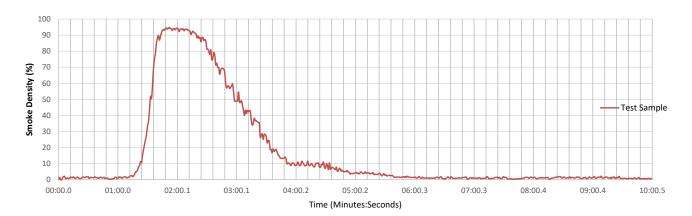
Ignition Time on the sample was observed at 01:07. Crackling was observed at 00:45. observed at 03:03.


A Maximum Flamefront of 19.1 feet was

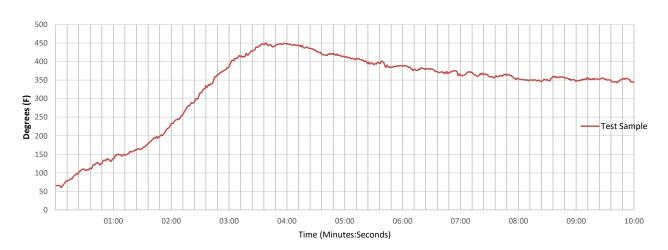

RESULTS CONTINUED: Test Number 1 of 3

Smoke Readings

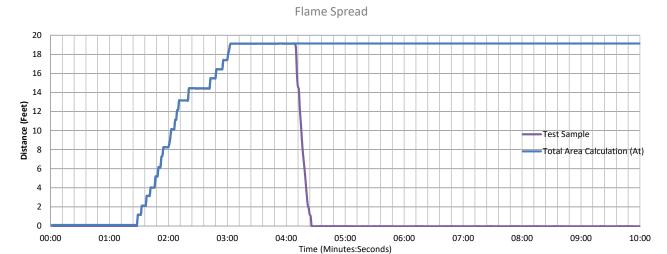




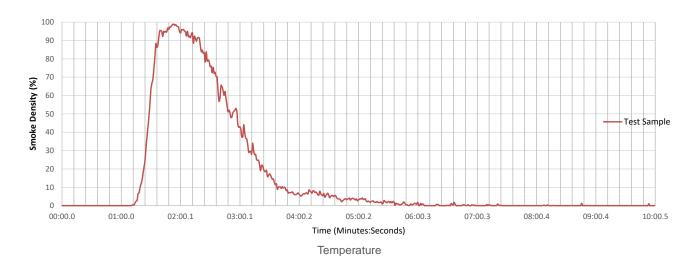
RESULTS CONTINUED: Test Number 2 of 3

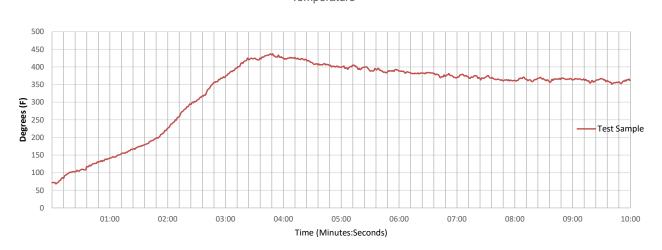


Smoke Readings



Temperature





RESULTS CONTINUED: Test Number 3 of 3

Smoke Readings

Page 9 of 10

APPENDIX

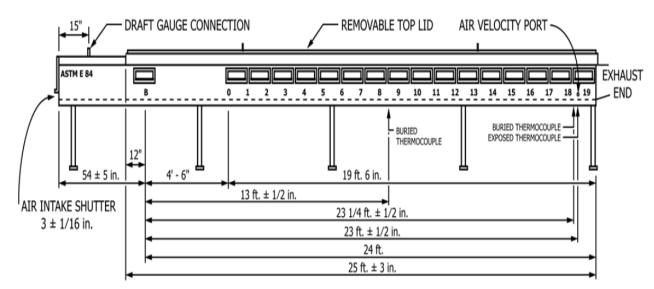


Diagram 1. I est Chamber side view showing critical dimensions.

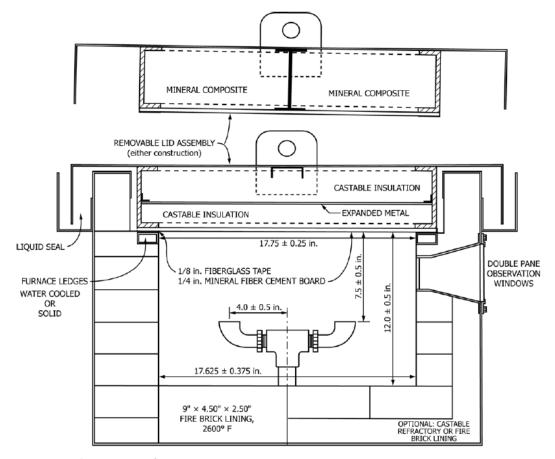
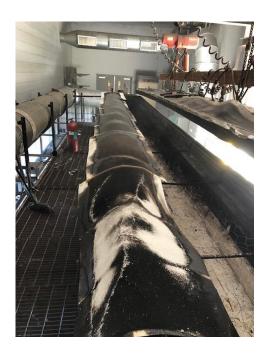



Diagram 2. Test Chamber looking down chamber showing critical dimensions.

APPENDIX

Photo's: Surface of Specimen's Tested

<<<END OF TEST REPORT>>>